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Abstract—Leakage contracts are a new security abstraction
modeling—at the ISA level—the information leaked by a CPU
through microarchitectural side channels. As show by recent
work, contracts provide a foundation for secure programming.
However, modern CPUs lack dedicated leakage contracts that
accurately capture their specific leakage profiles.

In this paper, we report on our on-going work towards an
automated approach—based on relational testing—to synthesize
leakage contracts directly from the underlying hardware. We
define a domain-specific language to formalize leakage contracts
and develop a counterexample-driven synthesis method to au-
tomatically generate contracts that capture all leaks within a
given microarchitecture. Our approach is implemented in the
MALCOS tool, which can synthesize leakage contracts for CPUs
for the x86, ARM, and RISC-V architectures. We evaluate
MALCOS performance in terms of the precision and soundness
of synthesized contracts.

I. INTRODUCTION

Microarchitectural attacks [1], [2] exploit subtle differences
in a program’s execution time—due to CPU optimizations—to
leak information from seemingly secure programs. To defend
against such attacks, programmers need to reason about the
interactions between software and a CPU’s microarchitecture.
However, the Instruction Set Architecture (ISA)— the tradi-
tional abstraction layer between software and hardware—lacks
microarchitectural details.

Leakage contracts [3], [4] have been recently proposed as a
new security abstraction at ISA-level. Such contracts allow
specifying at ISA-level the information leaked by a CPU
through microarchitectural side-channels; thereby providing a
basis for secure programming. However, modern CPUs do not
come with dedicated leakage contracts. While deriving such
a contract for a specific CPU (and microarchitecture) could
be done through an extensive and manual reverse engineering
effort, scaling this process to the large number of available
commercial CPUs requires automation.

In this work, we report on our on-going work towards
an automated approach for synthesizing leakage contracts
directly from hardware measurements. This approach will
allow us to automatically derive leakage contracts for existing
commercial CPUs with limited manual effort. We make the
following contributions:

• We develop a domain-specific language (DSL) for
formalizing ISA-level leakage contracts (Section III).
Following the formalism from [3], our DSL models leakage
contracts as a set of leakage clauses describing what
observations are leaked during program execution. That is,
leakage contracts in our DSL map each program execution to
a leakage trace capturing the leaked information. Importantly,

contracts specified in our DSL are executable. That is, they
can be applied to arbitrary x86, ARM, and RISC-V programs
(and associated inputs) to derive the corresponding leakage
traces recording all leaks modeled by the contract.

• We develop a counterexample-guided synthesis
approach, which we overview in Section II and detail in
Section IV, for automatically learning leakage contracts
from hardware measurements. Our synthesis approach
incrementally learns the leakage contract associated with
a CPU by (1) generating test cases for detecting leaks,
(2) executing these test cases on the target CPU to derive
hardware measurements capturing the observational power of
different cache-based attackers, and (3) refining the candidate
contract to account for the newly discovered leaks.
Our approach ensures that the synthesized contract is satisfied
by the processor design [3] for all explored test cases.
That is, the contract captures all leaks detected by the test
cases explored during the synthesis process. Additionally, our
approach minimizes unnecessary leakage over-approximations
by requiring that the synthesized contract cannot distinguish
a given set of positive examples, i.e., test cases that produce
the same hardware measurements.

• We implement a prototype of our synthesis approach in a
tool called MALCOS. The tool uses the Rosette framework [5]
as a back-end for synthesis. Moreover, MALCOS relies on the
two different testing tools for generating test cases and detect-
ing leaks in CPUs: Revizor [6], [7] (for the x86 architecture),
and Scam-V [8], [9] (for the ARM and RISC-V architectures).
Our preliminary results (Section V) indicate that MALCOS can
successfully synthesize program-specific leakage contracts,
showing its ability to identify a sound over-approximation of
standard leakage models.

II. OVERVIEW

In this section, we overview MALCOS’s synthesis approach
with an example. Next, we first describe the leakage profile
of our target CPU and then overview of our approach.

Target CPU: In our example, we consider a CPU that
implements a simple register file compression (RFC) optimiza-
tion [10]. This optimization reduces the physical size of the
register file by mapping all logical registers that store the value
0 to the same physical register. These compression schemes,
however, often reduce the pressure on the register file thereby
potentially resulting in timing leaks.

Overview: Figure 1 shows the workflow of the MALCOS
synthesis approach, which relies on two main components:
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Fig. 1: MALCOS synthesis approach

1) The checker that, given a candidate contract, tries to
discover leaks in the target CPU that are not captured by
the contract. Whenever the checker finds a new leak, it
returns a counterexample, which is a sequence of instructions
together with a pair of initial states that (a) produce the same
leakage traces according to the candidate contract, but (b)
result in different microarchitectural observations, i.e., they
are distinguishable by a microarchitectural attacker.
In practice, MALCOS’s synthesis approach in parametric in
the underlying checker and our implementation uses the
Revizor [6] and Scam-V [8] testing tools, which rely on
cache-based side-channels as a source of microarchitectural
observations.

2) The refiner that, given a counterexample describing a
newly discovered leak, generates a new expression to be
added to the contract that captures the new leak. The refiner
instantiates the problem of discovering such an expression as a
syntax-driven synthesis task implemented on top of the Rosette
solver [5].

We now explain how MALCOS can learn the contract
associated with our target CPU when starting from an empty
candidate contract, i.e., cand = ∅. To simplify the overview,
we consider a simple microarchitectural attacker that can ob-
serve whether RFC happens. First, MALCOS runs the checker
to identify leaks that are not captured by the candidate ( 1 ).
For this, the checker generates multiple test cases (each one
consisting of a program and a pair of initial states), executes
them on our target CPU, and performs microarchitectural
observations to detect potential leaks. Given that cand = ∅
while the target CPU leaks through RFC, the checker discovers
the following counterexample describing the RFC leak:

p := MOV rax,rbx σ1 := (rbx 7→ 0) σ2 := (rbx 7→ 1)

Here, the program p consists of an instruction assigning to
register rax the value of register rbx, where the value of
rbx is 0 in state σ1 and a value different from 0 in state
σ2. Therefore, RFC happens when executing p from σ1, but
does not happen when executing p from σ2, which results in
different microarchitectural observations for the attacker. That
is, the test case cex := ⟨p, σ1, σ2⟩ is a counterexample for
the candidate contract cand = ∅.

expr1 := operand-value 0 IF [(operand-type 0 = reg) and
(operand-access 0 = write)]

Fig. 2: Learned expression

Next, MALCOS uses the refiner to analyze the counterex-
ample cex := ⟨p, σ1, σ2⟩ and to generate a DSL expres-
sion capturing the leak. The refiner starts by simulating the
architectural execution of the counterexample and collects
information about all architectural states (e.g., register values,
operand information for the executed instructions, the program
counter) explored during execution. The refiner uses all this
information to generate the symbolic constraints for the syn-
thesis problem ( 2 ). Then, the refiner uses the Rosette solver
to identify a new DSL expression expr1 that distinguishes
the counterexample cex ( 3 ), i.e., for which the executions
of p starting from σ1 and σ2 lead to different expr1 values.
For instance, MALCOS might learn the expression expr1
in Figure 2, which distinguishes the counterexample. The
expression exposes the value of the first operand whenever
the first operand is a register and it is the target of a register
write.

The refiner adds the newly discovered expression expr1
to the candidate contract cand. MALCOS works in a
iterative fashion by performing a new round of checking
and refinement to discover further leaks ignored by the new
candidate contract cand ( 4 ). Given that the contract from
Figure 2 is sufficient to capture the RFC leaks (since it exposes
all values written to registers during execution), MALCOS
terminates and outputs the learned contract in Figure 2.

Fixing over-approximations: MALCOS iteratively refines the
candidate contract from counterexamples. This, however, can
lead to contracts that over-approximate leaks in the target CPU,
i.e., the candidate contract might expose more information than
needed to capture the actual leaks.

For instance, consider the learned contract in Figure 2,
which exposes the value of written registers during program
execution. While this distinguishes any two executions leaking
through RFC, it would also distinguish executions where no
RFC happens, e.g., where no register takes the value 0. To
mitigate these overapproximations, we extend our synthesis
approach to account for positive examples, that is, test cases
that are indistinguishable for both the contract and the microar-
chitectural attacker. For instance, given the initial candidate
contract cand = ∅, apart from the counterexample cex :=
⟨p, σ1, σ2⟩, the checker can discover positive examples like the
following one:

p := MOV rax,rbx σ3 := (rbx 7→ 1) σ4 := (rbx 7→ 2)

This positive example consists of the same program p
described above, and a new pair of states (σ3, σ4) where the
values of register rbx are both different from 0, thus resulting
in indistinguishable executions for our RFC attacker. That is,
the test case pex := ⟨p, σ3, σ4⟩ is a positive example for the
candidate cand = ∅.



expr1 := TRUE IF [(operand-type 0 = reg) and
(operand-access 0 = write) and (operand-value 0 = 0)]

Fig. 3: More precise contract for register file compression

Our synthesis approach now aims at synthesizing a DSL
expression that (1) distinguishes as many counterexample
cex1, . . . ,cexn while (2) distinguishing as few positive ex-
amples pex1, . . . , pexm as possible.

Using positive examples MALCOS can learn the expression
expr2 (see Figure 3), which exposes when the first operand
is a register and it is written with a value 0.

The expression expr2 is more precise than expr1, while still
capturing RFC leaks because it only exposes whenever 0 is
written to a register rather than exposing all register values
throughout the execution.

Program-dependent leakage: Another case of overapprox-
imation is when leakage of an instruction depends on its
context: i.e., the state affecting the surrounding instructions.
For example, in a simple microarchitecture the leakage of
register compression may be measurable only if the subsequent
instruction does not take a jump. In fact, taking a jump
can flush the pipeline, which allows the previous instruction
to complete before the subsequent instruction is executed,
independently if register compression has occurred.

In these cases, a leakage is connected to an instruction in a
specific location of the program. To account for these leaks,
MALCOS also supports synthesizing program-specific leakage
contracts, i.e., contracts that describe the leaks associated with
a fixed program. For this, (1) we restrict checkers to detect
leaks only w.r.t. a given program (i.e., test cases now consist
only of a pair of inputs), and (2) we restrict the refiner to
synthesize leakage expressions that, in addition to describe the
leak, also refer to a specific program counter in the program.

[1] mov x9, x2 obs (x2 = 0) if cond is F
[2] b.cond 4
[3] add x1, x2, x3
[4] mov x6, x3 obs (x3 = 0)

Fig. 4: Case 2: the first mov leaks information only if the
condition of the following branch is false; the second mov
always leaks

We illustrate this with a ARM program in Figure 4, for which
the synthesized program-specific contract is depicted in red
next to the corresponding instructions. The program contains
two mov instructions, the first of which is followed by a
conditional branch instruction: the program jumps to 4 if cond
holds. The first mov instruction only leaks the compression
of x2 if the condition of the subsequent branch does not
hold, since taking the jump flushes the pipeline and allows
the first mov to complete before the second mov is executed.
The second mov is not followed by a jump, and therefore it
always leaks the compression of x3.

III. CONTRACTS DSL

In this section, we formalise our domain-specific language
for expressing leakage contracts.

A. Syntax

(Bit string) bs := {0, 1}n
(Identifiers) id := REG [bs]

| operand type[bs]
| operand access[bs]
| operand value[bs]

(Expressions) ex := bs | id | ⊖ex | ex 1 ⊕ ex 2

| ex [ex 1 : ex 2]
(Predicates) pr := {0, 1} | ex 1 = ex 2 | ex 1 < ex 2

| not pr | pr1 and pr2
| pr1 or pr2

(Clause) cl := ex IF pr
(Contract) ctr := ∅ | {cl1 , cl2 , ..., cln}

Fig. 5: The MALCOS contract language

Figure 5 formally defines the basic types and syntax of our
contract DSL. The basic types of our DSL are bit strings (bs),
with bitvectors of length one representing booleans. The DSL
syntax consists of identifiers (id), expressions (ex), predicates
(pred), observations (obs) and contracts (ctr). Identifiers are
used to extract information of the architectural state from the
registers (REG), the value of an operand of an instruction
(operand value), such as addresses of a load, the type of an
operand (operand type), or the access type (operand access).
An expression (ex) can include identifiers (id), bit strings
(bs), and standard operations over bit strings. A predicate (pr)
states conditions that must be satisfied in order to produce the
observations. Predicates can be Boolean values or expressions
involving logical operations between bit strings or predi-
cates such as equality, negation, conjunction and disjunction.
Clauses (cl) are formed by combining conditional expression
based on predicates (ex IF pr), and contracts are expressed as
possibly empty sets of clauses.

In the following, we say that a contract is program-specific
if every predicate constraints the program counter to be a
constant. A program-specific contract allows to express that
an instruction leaks only in a specific context, for example, it
may specify that only one specific load of a given program
leaks the accessed address.

B. Semantics

A contract in our DSL maps program executions to leakage
traces, i.e., sequence of observations obtained by evaluating
the clauses in the contract on every state in the program
execution.

We now formalize this concept. Let −→p be a program
semantics mapping each architectural state σ to the next
state σ′. Each contract C induces a labelled semantics −→C

that extends architectural executions with labels capturing the



values of each contract clause in C. Concretely, the contract
semantics is defined by the following rule:

σ −→p σ′ δ = {[[cl]](σ) | cl ∈ C}

σ
δ−→p,Cσ′

where [[cl]](σ) denotes the observation obtained by evaluating
clause cl in state σ. Examples of observations include, the
address of memory loads or of the pc at certain instructions.

A contract trace τ is a sequence of observations (o) obtained
by applying the contract semantics −→p,C to an execution, that
is, τ = oi ◦ · · · ◦ oj−1 in which σi

oi−→p,C . . .
oj−1−−−→p,C σj . In

the following we use Contract(C, p, σ) to represent the trace
of the contract C associated with the maximal execution of
the program p starting from the input σ.

Given a contract C, two traces are C-equivalent if they
agree on all contract observations. Since the ISA semantics
is deterministic, two input states are C-equivalent if their
maximal traces are C-equivalent.

C. Contract satisfaction

We now conclude by instantiating the notion of contract
satisfaction [3] for our framework.

For this, we first introduce the notion of hardware traces,
which capture the observational power of the (microarchitec-
tural) attacker. We represent the hardware trace as the output
of a function:

HTrace = Attack(p, σ, Ctx)

that returns the observations made by an attacker on all avail-
able microarchitectural side-channels. The function HTrace
takes three input parameters: (1) the victim program (p); (2)
the input state σ processed by the victim’s program (i.e., the
architectural state including registers and main memory); (3)
the microarchitectural context Ctx in which it executes.

Informally, a CPU satisfies a contract C for a program p
if for any two program’s inputs that are C-equivalent, they
produce indistinguishable hardware traces in any context, i.e.,
the executions are indistinguishable by an adversary operating
at the microarchitectural level:

∀σ, σ′, Ctx. Contract(p, σ) = Contract(p, σ′)

=⇒ Attack(p, σ, Ctx) = Attack(p, σ′, Ctx)

We say that a CPU satisfies a contract C, if the CPU satisfies
it for every program.

We now introduce some auxiliary terminology that we will
use later in Section IV. A test case ⟨p, σ1, σ2⟩ for our contract
satisfaction analysis consists of a program p and a pair of input
states σ1, σ2. When analyzing contract satisfaction for a single
program (where p is fixed), we often refer—for conciseness—
to a test case simply as a pair of input states ⟨σ1, σ2⟩.

If a CPU does not satisfy a contract, there is a leakage
counterexample cex := ⟨p, σ1, σ2⟩. That is, there exists
a test case of a program p and two initial states σ1, σ2

that produce different hardware traces while generating C-
equivalent contract traces.

Algorithm 1: MALCOS learning algorithm

1 Procedure ContractSynthesize(cand):
2 while true do
3 pex , cex ← Checker(cand);
4 if cex then
5 expr ← Refiner(pex , cex);
6 cand := expr ;
7 else
8 return cand ;
9 end

10 end
11 Procedure Refiner(pex , cex):
12 constr ← ConstrGenerator(pex , cex);
13 expr ← ExprGenerator(constr);
14 if expr then
15 return expr ;
16 else
17 return failed;
18 end
19 end
20 end

IV. SYNTHESIS APPROACH

We outline the contract synthesis algorithm followed by
MALCOS in Algorithm 1. It relies on two main procedures:
the Checker, to find counterexamples describing leaks, and
the Refiner, to refine the current candidate contract to
account for newly discovered leaks. We start by discussing
the algorithm and then explain the Checker (Section IV-A)
and Refiner (Section IV-B) procedures.

MALCOS takes as input a candidate contract, cand, which
may be initially empty (i.e., it does not expose anything).
The algorithm iterates over all the programs generated by
the Checker and attempts to give an answer to whether the
target processor satisfies cand; if not, it provides a proof of
unsatisfiability, cex, (potentially, a list of counter-examples that
showcase the unsatisfiability), and a list of positive-examples
pex, i.e., examples that satisfy the current contract. Then,
the Refiner attempts to refine cand with one or more
counterexamples cex and positive examples pex, generating
constraints and searching for an expression, expr, accordingto
the MALCOS’s DSL. If successful, MALCOS adds expr to
cand, which is then updated and evaluated again. When cand
satisfies the target properties, i.e., the checker is not able
no find more cex, the process the procedure halts and return
the learned cand.

A. Checker Modules

MALCOS is built on top of two microarchitectural fuzzers,
REVIZOR [6] (for x86 architecture) and SCAM-V [8], [9]
(for ARM and RISC-V architectures), which we use as our
Checker modules.

The Checker is responsible to find leaks in the target CPU
(target) that are not yet captured by the candidate (cand). That



is, in the terminology of Section III, the checker discovers
leakage counterexamples for the candidate contract cand. To
this end, the Checker generates a set of random programs
and pairs of inputs, where the inputs are a set of values that
initialize the CPU architecture (registers, flags, and memory).
The Checker then runs rounds of fuzzing.

On REVIZOR this fuzzing rounds consist on: (1) executing
the Unicorn CPU emulation system to obtain the contract
traces (o); (2) executing the target CPU to collect the hardware
traces (τ ); (3) check for contract leaks. The fuzzing rounds
end when the Checker finds a leakage counterexample
cex := ⟨p, σ1, σ2⟩, which as already mentioned consist of a
program p and two initial states σ1, σ2 that produce different
hardware traces while generating C-equivalent contract traces.

SCAM-V, on the other hand, combines techniques from
program verification and fuzzing to perform relational testing
to validate the candidate contracts. The most glaring difference
between the two approaches is that for a generated test
program p, SCAM-V uses symbolic execution to synthesize
a relation that for p identifies states that are observationally
equivalent according to the contract being validated. Next, it
generates an instance of this relation in terms of two input
states, and finally, SCAM-V runs the generated program with
two inputs on hardware and compares the measurements on the
side channel of the processor. The generated inputs satisfy the
synthesized relation, implying (if the contract is valid) that the
side-channel data on hardware cannot be distinguished either.
If we can distinguish the two runs on hardware, we have a
counterexample that invalidates the contract.

B. Refiner

The Refiner is the main module of MALCOS and it han-
dles contract synthesis. The Refiner (see Algorithm 1) takes
as input (1) a candidate contract cand describing the current
leakage model capturing all leaks found by the Checker so
far, (2) a list pex of positive examples that satisfy the current
contract candidate cand and (3) a list cex of counterexamples
to the current candidate cand found by the Checker.

At every invokation, the Refiner refines the candidate
contract, cand, to account for the discovered leak (the coun-
terexamples in cex). This requires finding a contract, cand ′,
such that: (i) program executions that are cand -equivalent are
also cand ′-equivalent, and (ii) no counterexample in cex is
also a counterexample for cand ′.

As a basis for the synthesis task, the Refiner turns each
test case ⟨p, σ, σ′⟩ in cex and pex into a pair of runs, where
each run is the sequence of architectural states σi explored
when executing the program p starting from σ (respectively
σ′). Concretely, for each explored state σi, the run contains
the current state of the registers, the opcode of the executed
instruction as well as information about this instruction’s
operands, such as their address, type or access type. For
instance, consider the following instruction: and rax, rbx.
Figure 6 shows the architectural state information correspond-
ing to the state just before executing the instruction.

(Regs) := (vRAX | vRBX | vRCX | vRDI | vRDX | vRSI | vPC)
(Opcode) := AND

(Operand 0) := (RAX | REG | READ WRITE)
(Operand 1) := (RBX | REG | READ)

Fig. 6: Architectural state information associated with the
instruction and rax, rbx. Above, vregId denotes the value
associated with register regId .

These runs are the basis from which the Refiner gener-
ates the new contract. MALCOS uses Rosette [5], a solver-
aided language that extends Racket, to (1) formalize the
semantics of our DSL, (2) generate the synthesis constraints
associated with the runs from cex and pex , and (3) synthesize
the new leakage clause that distinguishes all counterexamples
in cex while distinguishing as few positive examples in pex
as possible. First, the Refiner generates constraints which it
uses for synthesizing expressions. These constraints help in the
identification of discrepancies between the states associated to
the runs. Then, the Refiner uses the SMT solver Z3 to
synthesize a new leakage clause that describes the leakage
from the counterexample into MALCOS contract language.

Note that, for each contract, cand, and counterexample,
⟨p, σ1, σ2⟩, there may be different valid refinements. For
example, if p contains a memory access and a multiplication
where the accessed address and the multiplication operands
differ between σ1 and σ2, cand could be refined by adding one
of two observation clauses: one exposing the accessed memory
address and the other exposing the multiplication operands.
This refinement stage is meant to produce a stronger contract
at each iteration. The strongest contract is the one that satisfies
the following relation: let ctr1, ctr2 be two contracts, we say
that ctr1 is stronger than ctr2, written as ctr1 ⊒ ctr2, if and
only if ctr1 cannot expose more than ctr2.

In our current approach, we perform refinement by adding
the synthesized leakage clause cl to the current candidate
contract cand . As a result, the new candidate contract cand∪cl
immediately satsfies the requirements (i) and (ii) mentioned at
the beginning of this section.

V. PRELIMINARY EVALUATION

In this section, we report on our preliminary evaluation of
MALCOS’s ability to automatically learn leakage contracts for
x86 and ARM architectures.

Next, we first introduce the common metrics we use to
evaluate the quality of learned contracts (Section V-A). Then,
we describe the target leakage contracts used as ground truth
in our experiments (Section V-B). We conclude by describing
our preliminary results for the x86 (Section V-C) and ARM
(Section V-D) architectures.

A. Metrics

In the absence of established standard measures, in this
section we define the precision and soundness metrics to assess
the quality of the learned contracts.



The precision metric measures the accuracy of learned
contracts, i.e., how precisely the learned contract reflects
leakages of the target model: Precision = Dist

Dist+MDist , where
Dist is the number of test cases that are both target and learned
models distinguishable; and MDist is the number of test cases
that are distinguishable for the learned model but not for the
target.

On the other hand, the soundness metric measures the cor-
rectness of the learned contract: Soundness = Indist

Indist+TDist ,
where Indist is the number of test cases that are both target
and learned models indistinguishable; and TDist is the number
of test cases that are distinguishable for the target but not for
the learned model.

B. Contract Models

We now describe the leakage contracts used as ground truth
in our experiments.

Program counter contract: The pc contract leaks the value
of the program counter throughout the execution [11].

Constant-time contract: The ct contract models the constant-
time observer [12], which is commonly used when reasoning
about side channels in cryptographic algorithms. It exposes
the value of the program counter and the addresses of load
and store operations throughout the execution.

Tag Index contract: The TagIdx contract differs from ct in
that it only exposes the tag and set index associated with each
memory access (instead of the whole memory address like in
ct). This model is often used to check the security of programs
when memory is organized in blocks that are transferred
atomically between the different memory layers [13].

Register file compression: The rfc contract models the
leaks induced by the register file compression optimization
described in Section II.

Multiplication simplification: The mul contract models tim-
ing leaks associated with common computation simplification
over multiplications [10]. In particular, mul exposes whenever
the operands of a multiplication are either 0 or 1.

C. Preliminary Results for the x86 architecture

In this experiment, we use MALCOS (with Revizor [6] as
a checker) to synthesize program-specific leakage models for
the x86 architecture. For this, we first extended Revizor to
synthesize leakage models directly from ground-truth imple-
mentations of the five contracts from Section V-B.

For each of the contracts from Section V-B, we randomly
generate 10 programs and we use MALCOS to learn a program-
specific contract with (1) varying number of inputs (from
25 to 250) and (2) with or without positive examples (4
in total). We measure the soundness and precision of each
learned contract against a (disjoint) validation set of 10’000
inputs. Figure 7 and Figure 8 report the average precision
and soundness achieved by the contracts learned by MALCOS
against the corresponding ground-truth.

The results in Figure 7 indicate that, the use of positive
examples increases the precision of the learned contracts. In

contrast, Figure 8 indicates that the soundness of the learned
contract grows up to 1 at the increase of the number of inputs
increases the soundness.

D. Preliminary Results for the ARM architecture

In our evaluation for ARM architecture (with Scam-V [8]
as a checker), we assessed the effects of the amount of
counterexamples and positive examples that were provided
as input. We constructed a dataset of 40 different programs
consisting of basic instructions such as branch, memory and
arithmetic operations.

By varying the number of positive (pex) and negative
(cex) examples, we measured the precision and soundness
of the synthesis focusing on the ct and TagIdx ground-truth
contracts with a validation set of 100 examples (50 positive
and 50 negative). The findings, which are shown in Figure 9
and Figure 10, demonstrate that increasing the number of
examples improves the precision in almost all cases.

VI. CONCLUSION

We presented an overview of our on-going work towards an
automated approach, which we implemented in the MALCOS
synthesis tool, for synthesizing leakage contracts directly from
hardware measurements. We see three concrete next steps
as future work: (1) performing an extensive performance
evaluation to assess the precision and soundness of the con-
tracts learned by MALCOS even when considering unrestricted
contracts (rather than only program-specific ones), (2) using
MALCOS to perform an in-depth security analysis of x86,
ARM, and RISC-V CPUs, and (3) extending our approach to
support more complex leakage contracts, e.g., those supporting
transient leaks.
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Fig. 9: Results per program for the CT contract.
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